equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
A concentração quântica nQ é a concentração de partícula (i.e. onúmero de partículas porunidade de volume) de um sistema onde a distância interpartícula é igual ao comprimento de onda térmico de de Broglie ou equivalentemente quando os comprimentos de onda das partículas são tangentes ("se tocam") mas não se sobrepõe.[1][2]
Efeitos quanticos tornam-se mais apreciáveis quando a concentração de partículas é maior ou igual que a concentração quântica, a qual é definida como:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
- onde:
- M é a massa das partículas no sistema
- k é a constante de Boltzmann
- T é a temperatura medida em kelvin
- é a constante de Planck reduzida
Como a concentração quântica depende da temperatura; altas temperaturas irão colocar a maioria dos sistemas no limite clássico sem estes terem uma densidade muito alta, e.g. como uma anã branca.
O abrandamento de átomos por meio de arrefecimento produz um estado quântico único conhecido como condensado de Bose ou condensado de Bose-Einstein. Este fenômeno foi teorizado nos anos 20 por Albert Einstein, ao generalizar o trabalho de Satyendra Nath Bose sobre a mecânica estatística dos Fótons (sem massa) para átomos (com massa). (O manuscrito de Einstein, que se pensava estar perdido, foi encontrado em 2005 numa biblioteca da Universidade de Leiden). O resultado do trabalho de Bose e Einstein é o conceito de gás de Bose, governado pela estatística de Bose-Einstein que descreve a distribuição estatística de partículas idênticas de spin inteiro, conhecidas hoje em dia como Bósons. As partículas bosónicas, que incluem o Fóton e átomos como o He-4, podem partilhar estados quânticos umas com as outras. Einstein especulou que arrefecendo os átomos bosónicos até temperaturas muito baixas os faria colapsar (ou "condensar") para o mais baixo estado quântico acessível, resultando numa nova forma de matéria.
Esta transição ocorre abaixo de uma temperatura crítica, a qual, para um gás tridimensional uniforme consistindo em partículas não-interactivas e sem graus internos de liberdade aparentes, é dada por:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde:
é a temperatura crítica, a densidade da partícula, a massa por bóson, a constante de Planck, a constante de Boltzmann, e a função zeta de Riemann; ≈ 2,6124. Em física, a conexão de Berry e a curvatura de Berry são conceitos relacionados que podem ser vistos, respectivamente, como um potencial de gauge local e um campo de gauge associado à fase de Berry ou fase geométrica.[1] Esses conceitos foram introduzidos por Michael Berry em um artigo publicado em 1984, enfatizando como as fases geométricas fornecem um poderoso conceito unificador em vários ramos da física clássica e quântica.[2]
Fase de Berry e evolução adiabática cíclica
Na mecânica quântica, a fase de Berry surge em uma evolução adiabática cíclica.[3] O teorema adiabático quântico se aplica a um sistema cujo hamiltoniano depende de um parâmetro (vetorial) isso varia com o tempo . Se o 'ésimo autovalor permanece não degenerado em todos os lugares ao longo do caminho e a variação com o tempo t é suficientemente lento, então um sistema inicialmente no autovetor próprio normalizado permanecerá em um autovalor instantâneo do hamiltoniano , até uma fase, ao longo do processo. Em relação à fase, o estado no momento t pode ser escrito como[4]
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde o segundo termo exponencial é o "fator de fase dinâmica". O primeiro termo exponencial é o termo geométrico, com sendo a fase de Berry. Da exigência de que satisfaz a equação de Schrödinger dependente do tempo, pode-se mostrar que
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
indicando que a fase de Berry depende apenas do caminho no espaço de parâmetros, não da taxa em que o caminho é percorrido.
No caso de uma evolução cíclica em torno de um caminho fechado de maneira que , a fase de Berry de caminho fechado é
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Um exemplo de sistema físico em que um elétron se move ao longo de um caminho fechado é o movimento do ciclotron (detalhes são fornecidos na página da fase de Berry). A fase de baga deve ser considerada para obter a condição de quantização correta.
A correlação quântica é a mudança esperada nas características físicas à medida que um sistema quântico passa por um site de interação. Em outras palavras, o termo correlação quântica passou a significar o valor esperado do produto dos resultados nos dois lados.[1] Ela (por exemplo, emaranhamento[2][3] e discórdia[4][5][6]) é uma característica fundamental da mecânica quântica, que é conhecida por estar no centro de várias aplicações em potencial, como codificação superdensa, teletransporte quântico e criptografia quântica.[7]
Testes de Bell
No artigo de John Bell, de 1964, que inspirou os testes de Bell, supunha-se que os resultados A e B pudessem assumir apenas um dos dois valores, -1 ou +1. Concluiu-se que o produto também poderia ser apenas -1 ou +1, para que o valor médio do produto fosse
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde, por exemplo, N++ é o número de ocorrências simultâneas ("coincidências") do resultado +1 nos dois lados do experimento.
Em experimentos reais, porém, os detectores não são perfeitos e geralmente existem muitos resultados nulos. A correlação ainda pode ser estimada usando a soma das coincidências, já que claramente os zeros não contribuem para a média, mas na prática, em vez de dividir por Ntotal, tornou-se habitual dividir por
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
o número total de coincidências observadas. A legitimidade desse método baseia-se no pressuposto de que as coincidências observadas constituem uma amostra justa dos pares emitidos.
Seguindo as premissas realistas locais, como no artigo de Bell de 1964, a correlação quântica estimada convergirá após um número suficiente de ensaios para
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde aeb são configurações do detector e λ é a variável oculta, extraída de uma distribuição ρ (λ).
A correlação quântica é a principal estatística no CHSH e algumas das outras "desigualdades de Bell", cujos testes abrem caminho para a discriminação experimental entre a mecânica quântica, por um lado, e o realismo local ou a teoria das variáveis ocultas locais, por outro.[8][9]
Comentários
Postar um comentário